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Oxytocin reportedly decreases anxious feelings in humans and may therefore have therapeutic value for anxiety disorders, such as

post-traumatic stress disorder (PTSD). As PTSD patients have exaggerated startle responses, a fear-potentiated startle paradigm in rats

may have face validity as an animal model to examine the efficacy of oxytocin in treating these symptoms. Oxytocin (0, 0.01, 0.1,

or 1.0mg, subcutaneously) was given either 30 min before fear conditioning, immediately after fear conditioning, or 30 min before

fear-potentiated startle testing to assess its effects on acquisition, consolidation, and expression of conditioned fear, respectively. Startle

both in the presence and absence of the fear-conditioned light was significantly diminished by oxytocin when administered at acquisition,

consolidation, or expression. There was no specific effect of oxytocin on light fear-potentiated startle. In an additional experiment,

oxytocin had no effects on acoustic startle without previous fear conditioning. Further, in a context-conditioned test, previous light-shock

fear conditioning did not increase acoustic startle during testing when the fear-conditioned light was not presented. The data suggest that

oxytocin did not diminish cue-specific conditioned nor contextually conditioned fear, but reduced background anxiety. This suggests that

oxytocin has unique effects of decreasing background anxiety without affecting learning and memory of a specific traumatic event.

Oxytocin may have antianxiety properties that are particularly germane to the hypervigilance and exaggerated startle typically seen

in PTSD patients.
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INTRODUCTION

Oxytocin has recently received considerable attention for its
role in social behavior, and as a possible target for a number
of psychiatric disorders, particularly, anxiety, post-partum
depression, and autism (Carter, 2007; Heinrichs et al, 2009;
Macdonald and Macdonald, 2010; Marazziti and Catena
Dell’osso, 2008; Neumann, 2008). Oxytocin is a nonapeptide
released in blood from the hypothalamo-neurohypophysial
system and other peripheral organs, and in the brain
within the hypothalamus, amygdala, bed nucleus of the stria
terminals, brainstem, and other regions from neurons
originating in the hypothalamic paraventricular and
supraoptic nuclei (Gimpl and Fahrenholz, 2001; Kiss and
Mikkelsen, 2005).

Exogenous oxytocin has anxiolytic effects. Peripheral and
central injections of oxytocin in rats and mice reduce
anxiety in a number of tests when stress is high or induced
(Rotzinger et al, 2010). Subcutaneous injections of oxytocin
and oxytocin fragments in rats reduce retention of passive
avoidance (Boccia and Baratti, 2000; de Oliveira et al, 2007;
de Wied et al, 1987). Rats given low subcutaneous doses
(1–4mg/kg) of oxytocin spent more time in the center of
an open field, similar to the behavior of rats given the
anxiolytic benzodiazepine drug midazolam (Uvnäs-Moberg
et al, 1994). A high-stress strain of Sprague–Dawley rats that
typically perform poorly on conditioned avoidance showed
significantly improved learning when given systemic
oxytocin pretreatment (Uvnäs-Moberg et al, 2000).

In humans, exogenous intranasally administered oxytocin
has anxiolytic effects in males (Domes et al, 2007; Heinrichs
et al, 2003; Kirsch et al, 2005), diminishes aversive
conditioning (Petrovic et al, 2008), and promotes emotional
facial recognition (Di Simplicio et al, 2009; Fischer-Shofty
et al, 2010) and memory (Savaskan et al, 2008). Oxytocin
may have potential therapeutic use in social anxiety
disorder (Guastella et al, 2009), autism (Andari et al,
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2010), and possibly post-traumatic stress disorder (PTSD)
(Pitman et al, 1993).

Acoustic startle as a measure of sensorimotor respon-
sivity and anxiety (Braff et al, 2001; Davis et al, 2010;
Swerdlow et al, 2008; Vaidyanathan et al, 2009) is also
affected by oxytocin, but results are variable. High doses of
oxytocin had no effect on startle (Feifel and Reza, 1999), but
lower doses increased startle when tested in the dark phase
of the day (King et al, 1985). Oxytocin null mice displayed
low (Winslow et al, 2000) or normal (Caldwell et al, 2009)
startle amplitudes. Oxytocin receptor knockout mice
had normal acoustic startle (Lee et al, 2008). Oxytocin also
did not affect pre-pulse inhibition of startle (PPI) by itself
(Feifel and Reza, 1999), but disruption of PPI by
phencyclidine was enhanced in oxytocin null mice (Caldwell
et al, 2009), and oxytocin and a receptor agonist, WAY-
267464, reversed the disruption in PPI induced by
amphetamine and MK-801 in rats (Feifel and Reza, 1999;
Ring et al, 2010). Highly emotional rats that have low
plasma levels of oxytocin have increased startle (Uvnäs-
Moberg et al, 1999). Similarly, Nair et al (2005) demon-
strated that oxytocin receptor binding in the lateral septum
was negatively correlated with the amplitude of startle
potentiated by social isolation. Finally, humans homozy-
gous for the G allele (GG) of a single-nucleotide poly-
morphism within intron 3 of the OXTR gene had lower
levels of stress reactivity in anticipation of a startle stimulus
than individuals with one or two copies of the A allele (AA
and AG) polymorphism (Rodrigues et al, 2009). Together,
these studies suggest that endogenous oxytocin and
exogenously administered oxytocin modulate anxious states
of rodents and humans.

Oxytocin has not been tested in fear-potentiated startle,
which is often used as a measure of conditioned antici-
patory anxiety and may model the hypervigilance and
exaggerated startle responses typically seen in PTSD
patients (Grillon and Morgan, 1999; Grillon et al, 2009b;
Jovanovic et al, 2010, 2009; Morgan et al, 1995). One
advantage of the fear-potentiated startle paradigm is that
drug effects on fear or anxiety can usually be dissociated
from motoric effects of drugs (Davis et al, 1993; Fendt et al,
2010; Joordens et al, 1998; Walker and Davis, 2002a). In the
present experiments, oxytocin was administered systemi-
cally at various phases of learning, memory, and expression
of fear to investigate its effects on acquisition, consoli-
dation, and expression of conditioned fear. Our findings
indicate a unique anxiolytic profile for oxytocin on startle
and background anxiety, a state not directly related to
cue-specific or contextually conditioned fear, but sustained
beyond the immediate threat (Walker and Davis, 2002b).

MATERIALS AND METHODS

Animals

A total of 240 male Sprague–Dawley rats weighing between
225 and 250 g were obtained from Charles River Labora-
tories (Wilmington, MA). The rats were pair-housed in
shoebox cages in a climate-controlled facility with a 0700–
1900 hours light/dark cycle. Rats had free access to food
and water. At 1 week after arrival, experiments were
started and were performed between 0800 and 1600 hours.

All procedures were in accordance with the US National
Institutes of Health Guide for the Care and Use of
Experimental Animals and approved by the University of
Delaware IACUC.

Apparatus

Eight identical SR Lab ventilated startle chambers with clear
Plexiglas cylinders (San Diego Instruments, San Diego, CA)
were used for training and testing. On one wall of each
chamber, three LED lights in parallel produced 2600 lux and
served as the conditioned stimulus (CS). A floor insert made
of ten 4-mm diameter stainless steel tubes placed 4 mm
apart inside the Plexiglas cylinder to deliver footshocks was
used. Background white noise of 65 dB was continually
played throughout all experimental sessions.

Experiment Design

Each experiment followed the basic paradigm: 3 days of
startle acclimation/matching, 1 day of classical fear
conditioning, and after a 96-h gap, a fear-potentiated startle
test session. Deviations from this pattern are noted below in
the Experiment sections.

Startle Acclimation/Matching

For the first 3 days of the experiment, rats were habituated
to the chamber and presented with startle stimuli. For each
daily session, there was a 5-min acclimation period followed
by 30 trials of startle stimuli. The series of trials consisted of
white noise bursts of 10 trials each of 95, 105, or 115 dB
noise bursts presented in a predetermined pseudorandom
pattern with a 15 s intertrial interval. On the third day of
acclimation, the startle amplitudes were averaged for each
rat and the mean startle score was used to sort the rats into
matched groups with similar levels of startle. The rats were
then rehoused and paired with a member of the same group.

Fear Conditioning

On the fourth day, the rats were classically fear conditioned
to the light. Following a 5-min acclimation period, five
pairings of 3 s of the light CS co-terminating with a 500 ms,
0.6 mA foot shock occurred. The intertrial intervals ranged
from 60 to 180 s.

Fear-Potentiated Startle Testing

After a 96-h rest, the rats were tested for fear-potentiated
startle. The testing consisted of 5 min of acclimation
followed by 70 startle trials with 15 s intervals. The first 10
trials that consisted of 95 dB noise bursts were not used in
any analyses. The next 60 trials consisted of 95, 105, or
115 dB noise bursts, with half presented either in the dark or
co-terminating with the 3 s light CS. Thus, for each noise
burst intensity, there were 10 trials in the dark and 10 trials
co-terminating with the light. The trials were presented in a
predetermined pseudorandom pattern.
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Oxytocin Administration

Each group of rats was administered either 0, 0.01, 0.1, or
1.0 mg/ml/kg of oxytocin dissolved in saline (Bachem
Americas, Torrance, CA, catalog number H-2510). The
choice of doses was based on studies of de Wied et al (1987)
and Boccia et al (1998). The choice of injections 30 min
before the session was based on Ring et al (2006). A frozen
stock solution of 10 mg/ml oxytocin was diluted before each
experiment and maintained on ice. Injections were given
subcutaneously at the scruff of the neck.

Experiment 1: Oxytocin During Acquisition

Injections were given 30 min before conditioning to
examine the effect on acquisition of learned fear. Doses of
0.0, 0.01, 0.1, and 1.0 mg/kg oxytocin were tested with 12 rats
in each condition for a total of 48 rats.

Experiment 2: Oxytocin During Consolidation

Injections were given 20 min after conditioning to deter-
mine the effect on fear consolidation. Again vehicle and the
same three doses were tested with 12 rats in each condition.

Experiment 3: Oxytocin During Expression

Injections were given 30 min before fear-potentiated startle
testing on the eighth day (96 h after acquisition) to test for
the effect on expression of fear-potentiated startle. The
same doses of oxytocin were tested with 12 rats per dose.

Experiment 4: Oxytocin on the Acoustic Startle
Response Without Fear Conditioning

This experiment tested whether oxytocin suppressed the
ability to startle. Acclimation and matching were performed
similarly as previously described. On the fourth day, rats
were not put into the testing chambers, nor were they
conditioned (no lights, no shocks). On the eighth day,
oxytocin was administered 30 min before acoustic startle
testing. Instead of using a combination of Light + Noise and
Noise-only trials, the 30 trials presented during acclimation
was used. The same doses of oxytocin were tested with 12
rats per dose.

Experiment 5: Oxytocin on Context Fear-Potentiated
Startle

In addition to fear conditioning to the explicit cue,
conditioning also occurs to the context during cue-specific
fear conditioning. Testing for contextually conditioned fear
is typically conducted by returning the subject to the
context without presentation of the explicit fear CS (Jacobs
et al, 2010). To examine whether oxytocin influenced
contextually conditioned fear-potentiated startle or not,
the same 3 days of acclimation, group matching for startle
response, and light-shock fear conditioning on the fourth
day were performed as described above. After 96 h, rats
were given saline or oxytocin, and 30 min later, instead of
testing cue-specific light CS fear-potentiated startle, con-
textual fear was examined by presenting only Noise trials.

Thus, instead of receiving a combination of 60 Light + Noise
and Noise trials, rats received 60 Noise trials in the same
pseudorandom order as before. The same doses of oxytocin
were tested with 12 rats per dose.

Data Analysis

For experiments 1 through 3, three startle scores were used
for the statistical analyses: Pre-Fear startle, Noise, and Light
+ Noise. Startle amplitudes of each rat induced by the 95,
105, and 115 dB noise bursts (30 trials) from the last (third)
acclimation session were averaged to obtain a single score
of Pre-Fear startle. The same was done for the 30 Noise and
30 Noise + Light trials in the fear-potentiated startle test for
Noise and Light + Noise scores, respectively. These scores
were then used for statistical analyses.

The effect of oxytocin in the fear-potentiated startle test
was analyzed by a mixed model ANOVA with a between-
subject measure of dose (4 doses) and within-subject
measure of fear-potentiated startle (Light + Noise vs Noise).
Post hoc analysis of a main effect of dose on startle was
performed with a Dunnett’s test to compare the various
doses of oxytocin to the vehicle (saline). Cue-specific
conditioned fear was analyzed to two waysFusing absolute
fear-potentiated startle or proportional fear-potentiated
startle scores. An absolute fear-potentiated startle score
was computed by subtracting the average Noise startle
amplitude from its average Light + Noise startle amplitude
of each rat. A proportional fear-potentiated startle score for
each rat was computed dividing the absolute fear-poten-
tiated startle score by the average Noise startle amplitude.
Analysis of proportional fear-potentiated startle was done to
standardize the groups because fear-potentiated may be
distorted by the baseline effects on oxytocin (Walker and
Davis, 2002a). Dunnett’s tests were used for these analyses.

A measure of change in startle amplitude after fear
conditioning, which we call background anxiety, was also
computed. Pre-Fear startle was compared with the Noise trials
from the fear-potentiated startle test. Similar to the analysis of
fear-potentiated startle described above, a mixed model
ANOVA with a between-subject measure of dose and within-
subject measure of background anxiety (Pre-Fear vs Noise) was
performed. Post hoc analysis of a main effect of dose was
performed with a Dunnett’s test to compare the various doses
of oxytocin to the vehicle (saline). A significant interaction
effect was further analyzed with a Dunnett’s test after the startle
data was converted into background anxiety score (Noise
minus Pre-Fear startle scores).

Experiments 4 and 5 did not test for Light + Noise startle.
The Pre-Fear and Noise startle scores were statistically analyzed
in a similar manner as the background anxiety measure of
experiments 1–3. An a value of po0.05 was considered a
significant difference for all the analyses described above, but
trends (po0.1) are also presented in graphs.

RESULTS

The two important comparisons in this study are shown in
Figure 1. Background anxiety is the comparison between
Noise startle amplitude and Pre-Fear startle amplitude, and
is the facilitating effect of cue-specific fear conditioning on
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Noise trials in the fear-potentiated startle test. Cue-specific
fear-potentiated startle is the increase in Light + Noise
startle amplitude compared with Noise startle amplitude
due to the Light + footshock fear conditioning.

In general, regardless of when oxytocin was administered
(ie, acquisition, consolidation or expression), it had similar
effects on background anxiety and cue-specific fear-
potentiated startle, but the effects were statistically most
robust when oxytocin was administered 30 min before
acquisition session or the fear-potentiated startle test.
Oxytocin dose dependently diminished background anxiety
and acoustic startle both in the presence and absence of
light, but had no specific effect on cue-specific fear-
potentiated startle.

Experiment 1: Oxytocin Effects on Acquisition

There was a significant main effect of cue-specific fear-
potentiated startle (Light + Noise trials different from Noise
trials, F1,44¼ 106.1, po0.0001) and a trend for a main effect
of oxytocin dose on startle amplitude (F3,44¼ 2.33,
po0.088). A Dunnett’s test revealed a significant reduction
in acoustic startle by 0.1 mg oxytocin compared with saline
(po0.034, Figure 2a). There was no interaction effect
indicating that oxytocin did not affect cue-specific fear-
potentiated startle using absolute fear-potentiated startle
scores. This was supported using proportional fear-
potentiated startle scores (Figure 2b). Background anxiety
was only marginally reduced by oxytocin. A mixed model
ANOVA revealed a main effect of an increase in startle in
Noise trials compared with Pre-Fear trials (F1,44¼ 27.0,
po0.0001). A Dunnett’s test showed that there was a trend
for the 0.1 mg dose of oxytocin to diminish background
anxiety compared with saline (p¼ 0.064, Figure 2c).

Experiment 2: Oxytocin Effects on Consolidation

Similar to oxytocin given before acquisition, there was a
significant within-measure main effect of fear-potentiated
startle (F1,44¼ 147.8, po0.0001; Figure 3a). There was a

trend for a between-measure main effect of oxytocin on
startle amplitude (F3,44¼ 2.81, po0.092) and a Dunnett’s
test suggests this is because of reduced startle with 0.1 mg
oxytocin compared with saline (po0.046, Figure 3a). There
was a significant interaction effect (F3,44¼ 3.06, po0.038)
suggesting an effect of oxytocin on cue-specific fear-
potentiated startle using absolute fear-potentiated startle
scores. However, a Dunnett’s test using proportional fear-
potentiated startle scores was not significant indicating
oxytocin did not affect cue-specific fear-potentiated startle
when the scores were standardized (Figure 3b). Testing for
significance of background anxiety, there was a significant
overall increase in Noise startle (F1,44¼ 173.2, po0.0001),
but no main effect of oxytocin dose on startle amplitude,
nor an interaction. A Dunnett’s test suggests there was a
trend for a reduction in background anxiety with 0.1 mg
oxytocin (po0.08).

Experiment 3: Oxytocin Effects on Expression

Scores were not obtained from one rat because of
equipment malfunction. The effects of oxytocin given
30 min before the fear-potentiated startle test were similar
to the effects on acquisition and consolidation. There was a
significant main effect of fear-potentiated startle (F1,43¼
129.18, po0.0001) and a significant main effect of oxytocin
dose on startle amplitude (F3,43¼ 3.07, p¼ 0.038). Shown in
Figure 4a, Dunnett’s test revealed that the 0.01 mg dose
of oxytocin significantly diminished startle (p¼ 0.022) and
the 0.1 mg dose just missed significantly reducing startle
(p¼ 0.054). There was no effect of oxytocin on fear-
potentiated startle using either absolute or proportional
scores of fear-potentiated startle (Figure 4b). Analyzing
background anxiety, there was an overall increase in startle
to Noise compared with Pre-Fear startle (F1,43¼ 23.93,
po0.0001). Oxytocin reduced background anxiety
(Figure 4c). There was no main effect of oxytocin dose on
startle amplitude, but there was significant interaction
(F3,43¼ 3.14, p¼ 0.035). A Dunnett’s test on the interaction
effect revealed that 0.1 mg oxytocin significantly reduced
background anxiety compared with saline (p¼ 0.022), and
the other two oxytocin doses displayed a trend for reducing
background anxiety (0.001 mg, p¼ 0.094; 1.0 mg, p¼ 0.054).

Experiment 4: Oxytocin does not Reduce the Ability
to Startle

The previous experiments demonstrated that oxytocin
reduces acoustic startle both in the absence and presence
of the fear conditioned stimulus. While we are calling this a
reduction in background anxiety, an alternative explanation
is that oxytocin simply interferes with the ability to startle
or respond to the acoustic stimulus. To test whether
oxytocin is merely reducing the startle response, rats were
not fear conditioned, but tested for startle amplitude with or
without oxytocin. Within-subject comparisons were made
between startle before receiving oxytocin and 30 min after
oxytocin administration (Figure 5a). There were no effects
of any dose of oxytocin on startle amplitude. Thus, oxytocin
may not merely reduce the ability to startle, but seems to
reduce startle subsequent to fear conditioning.

Figure 1 Sample startle responses. Startle from three different trial types
were used to analyze the effects of oxytocin. Background anxiety is the
increase in startle amplitude in the Noise trials during the fear-potentiated
startle test compared with startle amplitude during the last acclimation
session (Pre-Fear startle). Cue-specific fear-potentiated startle is the
increase is startle amplitude in the Light + Noise trials compared with
startle amplitude in the Noise trials during the fear-potentiated startle test.
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It is possible, however, that the lack of an effect of
oxytocin on startle amplitude was because startle levels were
very low in this experiment, and oxytocin may be more

effective in reducing high levels of startle like those gene-
rated in experiments 1 through 3 following fear condition-
ing. We therefore reanalyzed the data of experiment 4

Figure 2 Effect of oxytocin administered before the acquisition phase. (a) Mean startle amplitudes of the three different trial types. The 0.03 above the
Noise and Light + Noise startle scores is the p-value of the difference in startle between saline and 0.1 mg oxtyocin. No other comparisons approached
statistical significance. (b) Proportional fear-potentiated startle scores. There were no statistical differences between any dose of oxytocin and saline.
(c) Background anxiety scores. The 0.06 is the p-value of the difference in background anxiety startle scores between saline and 0.1 mg oxytocin. No other
comparisons approached statistical significance.

Figure 3 Effect of oxytocin administered in the consolidation phase. (a) Mean startle amplitudes of the three different trial types. The 0.05 above the
Noise and Light + Noise startle scores is the p-value of the difference in startle between saline and 0.1 mg oxytocin. No other comparisons approached
statistical significance. (b) Proportional fear-potentiated startle scores. There were no statistical differences between any dose of oxytocin and saline.
(c) Background anxiety scores. There were no statistical differences between any dose of oxytocin and saline, but the 0.1 mg dose approached significance
(po0.08).

Figure 4 Effect of oxytocin administered before the fear-potentiated startle expression test. (a) Mean startle amplitudes of the three different trial types.
The 0.02, and 0.054 above the Noise and Light + Noise startle scores are the respective p-values of the differences in startle between saline and the 0.01 and
0.1 mg doses of oxytocin. (b) Proportional fear-potentiated startle scores. There were no statistical differences between any dose of oxytocin and saline.
(c) Background anxiety scores. The 0.09, 0.02, and 0.054 are the p-values of the differences in background anxiety startle scores between saline and the 0.01,
0.1, and 1.0 mg doses of oxytocin, respectively.
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using startle amplitudes induced by the three startle
stimulus intensities, 95, 105, and 115 dB noise bursts,
individually. There were no effects of oxytocin on startle
elicited at any of these intensities. The mean pre-oxytocin
and oxytocin startle amplitudes of the saline group induced
by the 115 dB noise burst were 134 and 145, respectively
(Figure 5b). These amplitudes are similar to the mean of the
combined 95, 105, and 115 dB induced startle amplitudes of
the Noise trials in the saline groups after fear conditioning
in experiments 1 through 3, in which the startle amplitude
means ranged from 119 to 150 startle units. Therefore,
because similar levels of startle amplitude were reduced by
oxytocin following fear conditioning, but not affected by
oxytocin without previous fear conditioning, it is likely that

oxytocin reduces background anxiety and not the ability
to startle.

Experiment 5: Oxytocin does not Reduce Contextually
Conditioned Fear

Whereas we suggest that oxytocin is reducing background
anxiety, it is possible that oxytocin interferes with condi-
tioned contextual fear instead. To test this explanation, rats
were tested for Pre-Fear acoustic startle amplitude, fear
conditioned to the light, but then tested for startle without
presenting the fear-conditioned light. Thus, if oxytocin
decreased startle in the test without ever presenting the fear
CS, it would indicate that oxytocin reduced contextually
conditioned fear. There was a significant main effect of an
increase in startle after fear conditioning (F1,44¼ 47.62,
po0.0001), but no significant main effect of oxytocin at any
dose, nor an interaction effect (Figure 6). The results
indicate that contextually conditioned fear was produced,
but oxytocin did not reduce this conditioned fear as
measured by startle amplitude, and suggest that the effects
of oxytocin on startle in experiments 1 through 3 were due
to its effects on some kind of background anxiety that is
different from contextually conditioned fear.

DISCUSSION

The results of the present experiments indicate that
oxytocin has unique effects on startle as measured in a
fear-potentiated startle paradigm. Oxytocin did not have
specific effects on cue-specific conditioned fear-potentiated
startle, which is different from the cue-specific reduction of

Figure 5 No effect of oxytocin on acoustic startle in rats that were not
fear conditioned. (a) Startle amplitudes averaged from the 95, 105, and
115 dB startle stimuli. (b) Startle amplitudes from the 115 dB startle
stimulus only.

Figure 6 Test of contextually conditioned fear. No effect of oxytocin on
acoustic startle in fear-conditioned rats not presented with the light CS
during startle testing. There was a significant increase in startle in the Noise
test compared with the Pre-Fear test in all the groups, indicating
contextually conditioned fear. There were no differences in startle
between the saline and oxytocin groups.
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fear-potentiated in rodents and monkeys by antianxiety
drugs such as diazepam and buspirone (Davis, 1979;
Joordens et al, 1998; Kehne et al, 1988; Risbrough et al,
2003; Winslow et al, 2007). Oxytocin, however, had a novel
suppressant effect on startle, both in the presence and
absence of the fear CS, but only if the fear CS was presented
during the test. Furthermore, the increase in startle to Noise
alone subsequent to fear conditioning (ie, background
anxiety) was diminished by oxytocin. This unusual effect
suggests that exogenous oxytocin acts as an anxiolytic
agent, but does not diminish learned fear to a cue-specific
or context CS. As discussed later, oxytocin may have
particular therapeutic relevance for PTSD patients.

Subcutaneous oxytocin was shown to reduce acoustic
startle given either during acquisition, consolidation, or
expression of conditioned fear. Cue-specific fear-poten-
tiated startle was not affected by oxytocin given at
acquisition or expression (and with the proportional, but
not absolute, fear-potentiated startle measure for consolida-
tion), indicating that even though oxytocin diminished
startle, there was no effect of oxytocin on cue-specific fear
in the learning and expression phases. It is possible that
oxytocin given during acquisition blunted nociception
(Lundeberg et al, 1994) during fear conditioning, but there
was no evidence of reduced cue-specific fear-potentiated
startle in the acquisition experiment. Oxytocin also did not
reduce the expression of acoustic startle in nonconditioned
rats, nor contextually conditioned fear. These experiments
indicate that oxytocin did not interfere with the ability to
startle, nor the ability to learn cue-specific and contextually
conditioned fear.

It is possible that oxytocin given before the fear-
potentiated startle test reduced cue-specific fear. In this
explanation, fear activated by the fear-conditioned light
lingers through the 15-s intertrial intervals to enhance
startle in the Noise-alone trials. Oxytocin might reduce cue-
specific fear and consequently suppress the lingering fear
throughout the intertrial interval and the Noise-alone trials.
Although this possibility was not tested directly, de Jongh
et al (2003) demonstrated that startle was not potentiated
when the Noise was delivered 1–5 s after the offset of the
light CS. This suggests that in our experiments the increase
of startle in Noise-alone trials and its reduction by oxytocin
were not due to cue-specific fear persisting into the Noise
trials. Nonetheless, this explanation would need to be tested
empirically before it is firmly rejected, possibly by testing
whether there are lingering effects of the cue-specific fear
CS in a novel context.

We hypothesize that oxytocin diminishes what we
call background anxiety. This is an anxiety state not directly
related to the cue-specific fear CS nor contextually
conditioned fear cues, but is activated by the fear CS.
This background state is evident during the testing of
fear-potentiated startle by an increase in acoustic startle
during Noise trials compared with acoustic startle in the
Pre-Fear startle tests. Startle both in the absence and
presence of the light fear CS was suppressed by oxytocin,
but only if the light fear CS was presented during the fear-
potentiated startle test session. Oxytocin given before
acquisition or during consolidation could also diminish
background anxiety without affecting learning and memory.
The reduced background anxiety would then carryover to

the test of expression to diminish startle when exogenous
oxytocin was not present. Thus, oxytocin might be uniquely
effective in reducing some type of background anxiety
during a threatening situation that is not cue-specifically
nor context-specifically conditioned.

A background anxiety-like phenomenon in a fear-
potentiated startle paradigm has been observed before.
Concomitant with intra-amygdala NMDA receptor blockade
of cue-specific fear-potentiated startle, Walker and Davis
(2002b) found a persistent increase in ‘baseline’ startle in
both Noise and Light + Noise trials coinciding with the first
light fear CS presentation. Background anxiety appears to
be activated by cue-specific fear, but might be independent
of it, likely because the two phenomena are subserved by
different neural circuits (Walker and Davis, 2002b).

We conducted a test for contextually conditioned fear
typically used in fear-conditioning experiments (Jacobs
et al, 2010). Oxytocin had no effect on the contextual fear-
conditioned increase in startle, which is different from the
reduction of contextually conditioned fear in CRH receptor
knockout mice using a shock-potentiated startle paradigm
(Risbrough et al, 2009). Shock-potentiated startle, in which
no explicit cues are paired with shock (Davis, 1989),
enhances startle when wild-type animals are returned to
the shock chamber (McNish et al, 1997; Richardson, 2000;
Risbrough et al, 2009). Antagonism or knockout of CRH
receptors reduces contextually conditioned shock-poten-
tiated startle, but cue-specific fear-potentiated startle is not
affected (Risbrough et al, 2009). Our conditioning protocol
of contextual fear was different from the shock-potentiated
startle paradigm, in that shock was paired with an explicit
cue, relegating context conditioning to the background. In
shock-potentiated startle, there is no cue-specific stimulus,
and thus the context acts as a foreground stimulus similar
to an explicit cue (Rescorla and Wagner, 1972). Whether
oxytocin is also ineffective in a shock-potentiated startle
paradigm with context as a foreground cue is a question for
further research.

In our paradigm, oxytocin was effective at very low doses
in the submicrogram range. Most studies of peripheral
injections of oxytocin on anxiety tests (eg, elevated plus
maze, light-dark box, open field, and acoustic startle) test
doses in the milligram range (Feifel and Reza, 1999; King
et al, 1985; Rotzinger et al, 2010). The submicrogram range
effective in our studies is similar to those used in many
intracerebroventricular and intracerebral infusion studies
(Rotzinger et al, 2010). However, our doses are similar to
those used in studies of peripherally administered oxytocin
on inhibitory avoidance in rats (de Oliveira et al, 2007; de
Wied et al, 1987; Kovacs et al, 1978) and post-training
administration in mice (Boccia et al, 1998). Thus, startle
appears to be as sensitive behavioral measure as passive
avoidance for peripherally administered oxytocin, but does
not answer the question of whether the site(s) of action are
peripheral or central. Peripheral and central oxytocin
systems are regulated differently, release very different
amounts of oxytocin, and metabolize oxytocin at different
rates, suggesting that the two systems are largely indepen-
dent (Veening et al, 2010). We have preliminary data that
oxytocin infused into the lateral ventricle in the same range
of doses we administered subcutaneously might not reduce
fear-potentiated startle or background anxiety (Ayers et al,
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2010). In the periphery, oxytocin might possibly be acting
by modulating glucocorticoid release at the adrenal glands
(de Oliveira et al, 2007) or at the heart and vasculature to
influence heart rate and blood pressure, as oxytocin
receptors are located in these organs (Kiss and Mikkelsen,
2005). Clearly, much more research is needed before the
sites of action and mechanisms of oxytocin on background
anxiety are known.

The unique effects of oxytocin on startle in the fear-
potentiated startle paradigm may have particular relevance
for PTSD. Potentiation of startle in PTSD patients may be
particularly sensitive to ‘context fear’ or ‘contextualization’
(Grillon, 2002; Liberzon and Sripada, 2008; Rougemont-
Bücking et al, 2010), but not cued fear. The nature of this
context fear in human studies is not clearFit may be a
result of contextual fear conditioning, verbal instructions of
the experiment, or increased fear/anxiety induced by the
aversiveness of the experiments (Böcker et al, 2001, 2004;
Grillon, 2002; Rougemont-Bücking et al, 2010). Context fear
might be the same as what we call background anxiety, that
is, ‘fear-potentiated startle is riding on an already elevated
baseline’ (Grillon, 2002). In our case, the background
anxiety is not contextually conditioned fear, and is likely
analogous to the hypervigilance and sensitized emotional
anticipation (Rosen and Schulkin, 1998) hypothesized to
increase startle in the face of perceived threats accompany-
ing patients with PTSD and panic disorder (Grillon et al,
1994; Grillon and Morgan, 1999; Grillon et al, 2009b;
Morgan et al, 1995). In this regard, combat veterans with
PTSD also display disruptions in PPI (Grillon et al, 1998,
1996), a nonlearned measure of sensorimotor gating (Braff
et al, 2001), and oxytocin and an oxytocin receptor agonist
reverse drug-induced disruption in PPI in rodents (Feifel
and Reza, 1999; Ring et al, 2010). Therefore, oxytocin might
specifically alleviate one or more physiopathologies of
PTSD.

The effect of oxytocin on background anxiety in our fear-
potentiated startle studies in rats is also reminiscent of the
findings from some studies with anxiolytic and antidepres-
sant drugs on context fear in humans, in which aprazolam,
diazepam, oxazepam, and a 2-week treatment of citalopram
reduce increased baseline startle, but not cue-specific fear-
potentiated startle (Baas et al, 2002; Grillon et al, 2006,
2009a). This does not appear to be due to sedative effects of
the drugs, but to a reduction in context fear (Grillon et al,
2006). Oxytocin similarly reduces increased background
anxiety without diminishing cue-specific fear-potentiated
startle, and does not appear to produce sedation, or at least,
diminish the ability to startle. Testing of oxytocin in fear-
potentiated startle in humans awaits future research.
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